Telegram Group & Telegram Channel
🎲 Задача со стажировки ШАД по вероятности: сколько участников добежит до вершины?

Представим забег 100 человек по узкому скользкому эскалатору. У каждого есть шанс поскользнуться и упасть — тогда он и все, кто бежал за ним, соскальзывают вниз. Добираются до вершины только те, кто был впереди последнего упавшего.

Мы можем настраивать вероятность падения p. Вопрос: какое значение `p` нужно выбрать, чтобы в среднем до вершины добегало ровно 20 человек из 100?

Обозначения:
N = 100: общее количество участников.
K = 20: желаемое среднее количество участников, достигших вершины.
p: вероятность того, что один участник поскользнется и упадет (эту величину нужно найти).

q = 1 - p: вероятность того, что один участник не упадет.
X: случайная величина, равная количеству участников, достигших вершины. Мы хотим, чтобы E[X] = 20.

Логика процесса:
Участник i (где i от 1 до 100) доберется до вершины тогда и только тогда, когда ни один из участников перед ним (включая его самого) не упадет.

То есть, участники 1, 2, ..., i должны успешно пройти свой путь.

Вероятность того, что участник 1 достигнет вершины = P(участник 1 не упал) = q.
Вероятность того, что участник 2 достигнет вершины = P(участник 1 не упал И участник 2 не упал) = q * q = q^2.

Вероятность того, что участник i достигнет вершины = P(участники 1, ..., i не упали) = q^i.

Математическое ожидание E[X]:

Математическое ожидание количества добравшихся до вершины можно вычислить как сумму вероятностей того, что каждый конкретный участник доберется до вершины. Это связано со свойством линейности математического ожидания и использованием индикаторных переменных (I_i = 1, если i-й участник добрался, 0 иначе; E[X] = E[sum(I_i)] = sum(E[I_i]) = sum(P(I_i=1))).
E[X] = P(участник 1 добрался) + P(участник 2 добрался) + ... + P(участник N добрался)
E[X] = q^1 + q^2 + q^3 + ... + q^N
Это сумма первых N членов геометрической прогрессии с первым членом a = q и знаменателем r = q. Формула суммы:
S_N = a * (1 - r^N) / (1 - r)
Подставляем наши значения:
E[X] = q * (1 - q^N) / (1 - q)
Решение уравнения:
Мы хотим, чтобы E[X] = K = 20, при N = 100.
20 = q * (1 - q^100) / (1 - q)
Вспомним, что q = 1 - p. Значит, 1 - q = p.
20 = (1 - p) * (1 - (1 - p)^100) / p
20p = (1 - p) * (1 - (1 - p)^100)

Это уравнение довольно сложно решить аналитически из-за члена (1 - p)^100. Однако мы можем сделать разумное предположение.

Приближение:
Поскольку мы ожидаем, что только 20 из 100 человек доберутся до вершины, это означает, что падения должны происходить относительно часто, и вероятность того, что все 100 человек не упадут (q^100), должна быть очень мала. То есть, q^100 ≈ 0.
Если q^100 пренебрежимо мало по сравнению с 1, то формула для E[X] упрощается:

E[X] ≈ q * (1 - 0) / (1 - q)
E[X] ≈ q / (1 - q)
Теперь подставим желаемое значение E[X] = 20:

20 ≈ q / (1 - q)
20 * (1 - q) ≈ q
20 - 20q ≈ q
20 ≈ 21q
q ≈ 20 / 21
Теперь найдем p:
p = 1 - q
p ≈ 1 - (20 / 21)
p ≈ 1 / 21

Проверка приближения:

Давайте проверим, насколько мало значение q^100 при q = 20/21:
q^100 = (20/21)^100 ≈ (0.95238)^100

Используя калькулятор, (20/21)^100 ≈ 0.0076. Это действительно мало по сравнению с 1.

Посчитаем E[X] с этим приближением:

E[X] = (20/21) * (1 - (20/21)^100) / (1 - 20/21)
E[X] = (20/21) * (1 - 0.0076) / (1/21)
E[X] = 20 * (1 - 0.0076)
E[X] = 20 * 0.9924
E[X] ≈ 19.848

Это очень близко к целевому значению 20.

Ответ:
Чтобы в среднем вершины достигали 20 ребят из 100, вероятность падения p для каждого участника нужно подобрать примерно равной 1/21 (или около 0.0476).

👇 Пишите свое решение в комментариях

@machinelearning_interview



tg-me.com/machinelearning_interview/1728
Create:
Last Update:

🎲 Задача со стажировки ШАД по вероятности: сколько участников добежит до вершины?

Представим забег 100 человек по узкому скользкому эскалатору. У каждого есть шанс поскользнуться и упасть — тогда он и все, кто бежал за ним, соскальзывают вниз. Добираются до вершины только те, кто был впереди последнего упавшего.

Мы можем настраивать вероятность падения p. Вопрос: какое значение `p` нужно выбрать, чтобы в среднем до вершины добегало ровно 20 человек из 100?

Обозначения:
N = 100: общее количество участников.
K = 20: желаемое среднее количество участников, достигших вершины.
p: вероятность того, что один участник поскользнется и упадет (эту величину нужно найти).

q = 1 - p: вероятность того, что один участник не упадет.
X: случайная величина, равная количеству участников, достигших вершины. Мы хотим, чтобы E[X] = 20.

Логика процесса:
Участник i (где i от 1 до 100) доберется до вершины тогда и только тогда, когда ни один из участников перед ним (включая его самого) не упадет.

То есть, участники 1, 2, ..., i должны успешно пройти свой путь.

Вероятность того, что участник 1 достигнет вершины = P(участник 1 не упал) = q.
Вероятность того, что участник 2 достигнет вершины = P(участник 1 не упал И участник 2 не упал) = q * q = q^2.

Вероятность того, что участник i достигнет вершины = P(участники 1, ..., i не упали) = q^i.

Математическое ожидание E[X]:

Математическое ожидание количества добравшихся до вершины можно вычислить как сумму вероятностей того, что каждый конкретный участник доберется до вершины. Это связано со свойством линейности математического ожидания и использованием индикаторных переменных (I_i = 1, если i-й участник добрался, 0 иначе; E[X] = E[sum(I_i)] = sum(E[I_i]) = sum(P(I_i=1))).
E[X] = P(участник 1 добрался) + P(участник 2 добрался) + ... + P(участник N добрался)
E[X] = q^1 + q^2 + q^3 + ... + q^N
Это сумма первых N членов геометрической прогрессии с первым членом a = q и знаменателем r = q. Формула суммы:
S_N = a * (1 - r^N) / (1 - r)
Подставляем наши значения:
E[X] = q * (1 - q^N) / (1 - q)
Решение уравнения:
Мы хотим, чтобы E[X] = K = 20, при N = 100.
20 = q * (1 - q^100) / (1 - q)
Вспомним, что q = 1 - p. Значит, 1 - q = p.
20 = (1 - p) * (1 - (1 - p)^100) / p
20p = (1 - p) * (1 - (1 - p)^100)

Это уравнение довольно сложно решить аналитически из-за члена (1 - p)^100. Однако мы можем сделать разумное предположение.

Приближение:
Поскольку мы ожидаем, что только 20 из 100 человек доберутся до вершины, это означает, что падения должны происходить относительно часто, и вероятность того, что все 100 человек не упадут (q^100), должна быть очень мала. То есть, q^100 ≈ 0.
Если q^100 пренебрежимо мало по сравнению с 1, то формула для E[X] упрощается:

E[X] ≈ q * (1 - 0) / (1 - q)
E[X] ≈ q / (1 - q)
Теперь подставим желаемое значение E[X] = 20:

20 ≈ q / (1 - q)
20 * (1 - q) ≈ q
20 - 20q ≈ q
20 ≈ 21q
q ≈ 20 / 21
Теперь найдем p:
p = 1 - q
p ≈ 1 - (20 / 21)
p ≈ 1 / 21

Проверка приближения:

Давайте проверим, насколько мало значение q^100 при q = 20/21:
q^100 = (20/21)^100 ≈ (0.95238)^100

Используя калькулятор, (20/21)^100 ≈ 0.0076. Это действительно мало по сравнению с 1.

Посчитаем E[X] с этим приближением:

E[X] = (20/21) * (1 - (20/21)^100) / (1 - 20/21)
E[X] = (20/21) * (1 - 0.0076) / (1/21)
E[X] = 20 * (1 - 0.0076)
E[X] = 20 * 0.9924
E[X] ≈ 19.848

Это очень близко к целевому значению 20.

Ответ:
Чтобы в среднем вершины достигали 20 ребят из 100, вероятность падения p для каждого участника нужно подобрать примерно равной 1/21 (или около 0.0476).

👇 Пишите свое решение в комментариях

@machinelearning_interview

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1728

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Machine learning Interview from tw


Telegram Machine learning Interview
FROM USA